

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Code of conduct

We expect Flutter’s contributors to act professionally and respectfully, and
we expect our social spaces to be safe and dignified environments.

Specifically:

	Respect people, their identities, their culture, and their work.

	Be kind. Be courteous. Be welcoming.

	Listen. Consider and acknowledge people’s points before responding.

Should you experience anything that makes you feel unwelcome in Flutter’s
community, please contact someone on the team, for instance
Ian or Tim. We will
not tolerate harrasment from anyone in Flutter’s community, even outside
of Flutter’s public communication channels.

Conflict resolution

When multiple contributors disagree on the direction for a particular
patch or the general direction of the project, the conflict should be
resolved by communication. The people who disagree should get
together, try to understand each other’s points of view, and work to
find a design that addresses everyone’s concerns.

This is usually sufficient to resolve issues. If you cannot come to an
agreement, ask for the advice of a more senior member of the team.

Be wary of agreement by attrition, where one person argues a point
repeatedly until other participants give up in the interests of moving
on. This is not conflict resolution, as it does not address everyone’s
concerns. Be wary of agreement by compromise, where two good competing
solutions are merged into one mediocre solution. A conflict is
addressed when the participants agree that the final solution is
better than all the conflicting proposals. Sometimes the solution is
more work than either of the proposals. Embrace the yak
shave [https://github.com/flutter/flutter/wiki/Style-guide-for-Flutter-repo#lazy-programming].

Questions

It’s always ok to ask questions. Our systems are large, and nobody will be
an expert in all the systems. Once you find the answer, document it in
the first place you looked. That way, the next person will be brought
up to speed even quicker.

[image: "I try not to make fun of people for admitting they don't know things, because for each thing 'everyone knows' by the time they're adults, every day there are, on average, 10,000 people in the US hearing about it for the first time. If I make fun of people, I train them not to tell me when they have those moments. And I miss out on the fun." "Diet coke and mentos thing? What's that?" "Oh man! We're going to the grocery store." "Why?" "You're one of today's lucky 10,000." (xkcd, May 2012)] [https://xkcd.com/1053/]

Contributing to Flutter

[image: Build Status] [https://cirrus-ci.org/flutter/flutter]

See also: Flutter’s code of conduct

Welcome

We invite you to join our team! Everyone is welcome to contribute code
via pull requests, to file issues on GitHub, to help people asking for
help on our mailing lists or on Stack Overflow, to help triage,
reproduce, or fix bugs that people have filed, to add to our
documentation, or to help out in any other way.

We grant commit access (which includes full rights to the issue
database, such as being able to edit labels) to people who have gained
our trust and demonstrated a commitment to Flutter.

This document focuses on what is needed to contribute by writing code
and submitting pull requests for the Flutter framework. For
information on contributing in other ways, see the community page
on flutter.io [https://flutter.io/community].

Developing for Flutter

To develop for Flutter, you will eventually need to become familiar
with our processes and conventions. This section lists the documents
that describe these methodologies. The following list is ordered: you
are strongly recommended to go through these documents in the order
presented.

	Our code of conduct, which stipulates explicitly
that everyone must be gracious, respectful, and professional. This
also documents our conflict resolution policy and encourages people
to ask questions.

	Values [https://github.com/flutter/flutter/wiki/Values],
which talks about what we care most about.

	Setting up your engine development environment [https://github.com/flutter/flutter/wiki/Setting-up-the-Engine-development-environment],
which describes the steps you need to configure your computer to
work on Flutter’s engine. If you only want to write code for the
Flutter framework, you can skip this step. Flutter’s engine uses
mainly C++, Java, and ObjectiveC.

	Setting up your framework development environment [https://github.com/flutter/flutter/wiki/Setting-up-the-Framework-development-environment],
which describes the steps you need to configure your computer to
work on Flutter’s framework. Flutter’s framework uses mainly Dart.

	Tree hygiene [https://github.com/flutter/flutter/wiki/Tree-hygiene],
which covers how to land a PR, how to do code review, how to
handle breaking changes, how to handle regressions, and how to
handle post-commit test failures.

	Issue hygiene [https://github.com/flutter/flutter/wiki/Issue-hygiene],
which covers our processes around triaging bugs, escalating high
priority bugs, assigning bugs, and our GitHub labels and
milestones.

	Our style guide [https://github.com/flutter/flutter/wiki/Style-guide-for-Flutter-repo],
which includes advice for designing APIs for Flutter, and how to
format code in the framework.

In addition to the above, there are many pages on our
Wiki [https://github.com/flutter/flutter/wiki/] that may be of
interest. For a curated list of pages see the sidebar on the wiki’s
home page. They are more or less listed in order of importance.

If you would like to chat to other people who work on Flutter, consider joining the
https://gitter.im/flutter/contributors chat channel. We also have a general chat
channel [https://gitter.im/flutter/flutter] for people who aren’t working on Flutter
but who use Flutter.

[image: Flutter] Flutter [image: Join Gitter Chat Channel -] [https://gitter.im/flutter/flutter?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

[image: Build Status - Cirrus] [https://cirrus-ci.com/github/flutter/flutter/master]
[image: Coverage Status -] [https://coveralls.io/github/flutter/flutter?branch=master]

Build beautiful native apps in record time

Flutter is Google’s mobile app SDK for crafting high-quality native interfaces on iOS and Android in record time. Flutter works with existing code, is used by developers and organizations around the world, and is free and open source.

Documentation

Main site: flutter.io [https://flutter.io/]

	Install [https://flutter.io/get-started/install/]

	Get started [https://flutter.io/get-started/]

	API documentation [https://docs.flutter.io/]

	Changelog [https://github.com/flutter/flutter/wiki/Changelog]

	How to contribute [https://github.com/flutter/flutter/blob/master/CONTRIBUTING.md]

For announcements about new releases and breaking changes, follow the
flutter-announce@googlegroups.com [https://groups.google.com/forum/#!forum/flutter-announce]
mailing list.

Fast development

Flutter’s hot reload helps you quickly
and easily experiment, build UIs, add features, and fix
bugs. Experience sub-second reload times,
without losing state, on
emulators, simulators, and hardware for iOS
and Android.

[image: Make a change in your code, and your app changes instantly.]

 Steps to Reproduce

name: I am having difficulty installing Flutter or getting it to work
about: You have run into problems while downloading or installing Flutter, or the
“flutter” tool is crashing, or you are running into some other issue before even
being able to use “flutter run”.

 Steps to Reproduce

name: I have a problem with my Flutter application.
about: You are writing an application with Flutter but the application is crashing
or throws an exception, a widget is buggy, or something looks wrong.

 <no title>

name: I want help writing my application
about: You have a question for how to achieve a particular effect, or you need help
with using a particular API.

 Dart SDK dependency

Dart SDK dependency

The bin/internal/engine.version file controls which version of the Flutter engine to use.
The file contains the commit hash of a commit in the https://github.com/flutter/engine repository.
That hash must have successfully been compiled on https://build.chromium.org/p/client.flutter/ and had its artifacts (the binaries that run on Android and iOS, the compiler, etc) successfully uploaded to Google Cloud Storage.

The /bin/internal/engine.merge_method file controls how we merge a pull
request created by the engine auto-roller. If it’s squash, there’s only one
commit for a pull request no matter how many engine commits there are inside
that pull request. If it’s rebase, the number of commits in the framework is
equal to the number of engine commits in the pull request. The latter method
makes it easier to detect regressions but costs more test resources.

 <no title>

 This directory contains tools and resources that the Flutter team uses
during development of the framework. The tools in this directory
should not be necessary for developing Flutter applications, though of
course they may be interesting if you are curious.

 <no title>

 This is a fake package for use by automated testing.
For example, the flutter_tools package uses this to test flutter test.

 <no title>

 The files in this directory are used as part of tests in the
flutter_tools package. Some are here because here these tests need a
pubspec.yaml that references the flutter framework (which is
intentionally not true of the flutter_tools package). Others are
here mostly out of peer pressure.

 <no title>

 This directory is used by //flutter/dev/bots/test.dart to verify that
flutter test actually correctly fails when a test fails.

 complex_layout

complex_layout

Scrolling benchmark

To run the scrolling benchmark on a device:

flutter drive --profile test_driver/scroll_perf.dart

Results should be in the file build/complex_layout_scroll_perf.timeline_summary.json.

More detailed logs should be in build/complex_layout_scroll_perf.timeline.json.

Startup benchmark

To measure startup time on a device:

flutter run --profile --trace-startup

Results should be in the logs.

Additional results should be in the file build/start_up_info.json.

 microbenchmarks

microbenchmarks

To run these benchmarks on a device, first run `flutter logs’ in one
window to see the device logs, then, in a different window, run any of
these:

flutter run --release lib/gestures/velocity_tracker_data.dart
flutter run --release lib/stocks/animation_bench.dart
flutter run --release lib/stocks/build_bench.dart
flutter run --release lib/stocks/layout_bench.dart

The results should be in the device logs.

 Flutter’s Build Infrastructure

Flutter’s Build Infrastructure

This directory exists to support building Flutter on our build infrastructure.

The results of such builds are viewable at:

	https://cirrus-ci.com/github/flutter/flutter/master

	Testing done on PRs and submitted changes on GitHub.

	https://build.chromium.org/p/client.flutter/console

	Additional testing and processing done after changes are submitted.

The Chromium infra bots do not allow forcing new builds from outside
the Google network. Contact @eseidelGoogle or another Google member of
the Flutter team if you need to do that.

The Cirrus [https://cirrus-ci.org]-based bots run the
test.dart script for each PR and submission. This does
testing for the tools, for the framework, and (for submitted changes
only) rebuilds and updates the master branch API docs
staging site [https://master-docs-flutter-io.firebaseapp.com].
For tagged dev and beta builds, it also builds and deploys the gallery
app to the app stores. It is configured by the
.cirrus.yml.

We also have post-commit testing with actual devices, in what we call
our devicelab.

Chromium infra bots

This part of our infrastructure is broken into two parts. A buildbot
master specified by our
builders.pyl [https://chromium.googlesource.com/chromium/tools/build.git/+/master/masters/master.client.flutter/builders.pyl]
file, and a set of
recipes [https://chromium.googlesource.com/chromium/tools/build.git/+/master/scripts/slave/recipes/flutter]
which we run on that master. Both of these technologies are highly
specific to Google’s Chromium project. We’re just borrowing some of
their infrastructure.

Prerequisites

To work on this infrastructure you will need:

	depot_tools [http://www.chromium.org/developers/how-tos/install-depot-tools]

	Python package installer: sudo apt-get install python-pip

	Python coverage package (only needed for training_simulation): sudo pip install coverage

Getting the code

The following will get way more than just recipe code, but it will get the recipe code:

mkdir chrome_infra
cd chrome_infra
fetch infra

More detailed instructions can be found here [https://chromium.googlesource.com/infra/infra/+/master/doc/source.md].

Most of the functionality for recipes comes from recipe_modules, which are
unfortunately spread to many separate repositories. After checking out the code
search for files named api.py or example.py under infra/build.

Editing a recipe

Flutter has one recipe per repository. Currently
flutter/flutter [https://chromium.googlesource.com/chromium/tools/build.git/+/master/scripts/slave/recipes/flutter/flutter.py]
and
flutter/engine [https://chromium.googlesource.com/chromium/tools/build.git/+/master/scripts/slave/recipes/flutter/engine.py]:

	build/scripts/slave/recipes/flutter/flutter.py

	build/scripts/slave/recipes/flutter/engine.py

Recipes are just Python. They are
documented [https://github.com/luci/recipes-py/blob/master/doc/user_guide.md]
by the luci/recipes-py github project [https://github.com/luci/recipes-py].

The typical cycle for editing a recipe is:

	Make your edits (probably to files in
//chrome_infra/build/scripts/slave/recipes/flutter).

	Update the tests. Run build/scripts/slave/recipes.py --use-bootstrap test train to update existing expected output to match the new output. Verify
completely new test cases by altering the GenTests method of the recipe.
The recipe is required to have 100% test coverage.

	Run build/scripts/slave/recipes.py run flutter/<repo> slavename=<slavename> mastername=client.flutter buildername=<buildername> buildnumber=1234 where <repo> is one
of flutter or engine, and slavename and buildername can be looked up
from the Build Properties section of a recent
build [https://build.chromium.org/p/client.flutter/one_line_per_build].

	Upload the patch (git commit, git cl upload) and send it to someone in
the recipes/flutter/OWNERS file for review.

Editing the client.flutter buildbot master

Flutter uses Chromium’s fancy
builders.pyl [https://chromium.googlesource.com/infra/infra/+/master/doc/users/services/buildbot/builders.pyl.md]
master generation system. Chromium hosts 100s (if not 1000s) of buildbot
masters and thus has lots of infrastructure for turning them up and down.
Eventually all of buildbot is planned to be replaced by other infrastructure,
but for now flutter has its own client.flutter master.

You would need to edit client.flutter’s master in order to add slaves (talk to
@eseidelGoogle), add builder groups, or to change the html layout of
https://build.chromium.org/p/client.flutter. Carefully follow the builders.pyl
docs [https://chromium.googlesource.com/infra/infra/+/master/doc/users/services/buildbot/builders.pyl.md]
to do so.

Future Directions

We would like to host our own recipes instead of storing them in
build [https://chromium.googlesource.com/chromium/tools/build.git/+/master/scripts/slave/recipes/flutter].
Support for cross-repository
recipes [https://github.com/luci/recipes-py/blob/master/doc/cross_repo.md] is
in-progress. If you view the git log of this directory, you’ll see we initially
tried, but it’s not quite ready.

Android Tools

The Android SDK and NDK used by Flutter’s Chrome infra bots are stored in Google Cloud. During the build a bot runs the
download_android_tools.py script that downloads the required version of the Android SDK into dev/bots/android_tools.

To check which components are currently installed, download the current SDK stored in Google Cloud using the
download_android_tools.py script, then dev/bots/android_tools/sdk/tools/bin/sdkmanager --list. If you find that some
components need to be updated or installed, follow the steps below:

How to update Android SDK on Google Cloud Storage

	Run Android SDK Manager and update packages
$ dev/bots/android_tools/sdk/tools/android update sdk
Use android.bat on Windows.

	Use the UI to choose the packages you want to install and/or update.

	Run dev/bots/android_tools/sdk/tools/bin/sdkmanager --update. On Windows, run sdkmanager.bat instead. If the
process fails with an error saying that it is unable to move files (Windows makes files and directories read-only
when another process is holding them open), make a copy of the dev/bots/android_tools/sdk/tools directory, run
the sdkmanager.bat from the copy, and use the --sdk_root option pointing at dev/bots/android_tools/sdk.

	Run dev/bots/android_tools/sdk/tools/bin/sdkmanager --licenses and accept the licenses for the newly installed
components. It also helps to run this command a second time and make sure that it prints “All SDK package licenses
accepted”.

	Run upload_android_tools.py -t sdk
$ dev/bots/upload_android_tools.py -t sdk

How to update Android NDK on Google Cloud Storage

	Download a new NDK binary (e.g. android-ndk-r10e-linux-x86_64.bin)

	cd dev/bots/android_tools
$ cd dev/bots/android_tools

	Remove the old ndk directory
$ rm -rf ndk

	Run the new NDK binary file
$./android-ndk-r10e-linux-x86_64.bin

	Rename the extracted directory to ndk
$ mv android-ndk-r10e ndk

	Run upload_android_tools.py -t ndk
$ cd ../..
$ dev/bots/upload_android_tools.py -t ndk

Flutter codelabs build test

The Flutter codelabs exercise Material Components in the form of a
demo application. The code for the codelabs is similar to, but
distinct from, the code for the Shrine demo app in Flutter Gallery.

The Flutter codelabs build test ensures that the final version of the
Material Components for Flutter
Codelabs [https://github.com/material-components/material-components-flutter-codelabs]
can be built. This test serves as a smoke test for the Flutter
framework and should not fail. If it does, please address any issues
in your PR and rerun the test. If you feel that the test failing is
not a direct result of changes made in your PR or that breaking this
test is absolutely necessary, escalate this issue by submitting an
issue [https://github.com/material-components/material-components-flutter-codelabs/issues/new?title=%5BURGENT%5D%20Flutter%20Framework%20breaking%20PR]
to the MDC-Flutter Team.

 <no title>

 This directory includes scripts and tools for continuous integration builds and tests.

 <no title>

 This directory includes scripts to build the docker container image used for
building flutter/flutter in our CI system (currently Cirrus).

In order to run the scripts, you have to setup docker and gcloud. Please
refer to the internal flutter team doc for how to setup in a
Google internal environment.

After setup,

	edit Dockerfile to change how the container image is built.

	run ./build_docker.sh to build the container image.

	run ./push_docker.sh to push the image to google cloud registry. This will
affect our CI tests.

 Flutter devicelab

Flutter devicelab

“Devicelab” (a.k.a. “cocoon”) is a physical lab that tests Flutter on real
Android and iOS devices.

This package contains the code for test framework and the tests. More generally
the tests are referred to as “tasks” in the API, but since we primarily use it
for testing, this document refers to them as “tests”.

Build results are available at https://flutter-dashboard.appspot.com.

Reading the dashboard

The build page

The build page is accessible at https://flutter-dashboard.appspot.com/build.html.
This page reports the health of build servers, called agents, and the statuses
of build tasks.

Agents

A green agent is considered healthy and ready to receive new tasks to build. A
red agent is broken and does not receive new tasks.

In the example below, the dashboard shows that the linux2 agent is broken and
requires attention. All other agents are healthy.

[image: Agent statuses]

Tasks

The table below the agent statuses displays the statuses of build tasks. Task
statuses are color-coded. The following statuses are available:

New task (light blue): the task is waiting for an agent to pick it up and
start the build.

Task is running (spinning blue): an agent is currently building the task.

Task succeeded (green): an agent reported a successful completion of the
task.

Task is flaky (yellow): the task was attempted multiple time, but only the
latest attempt succeeded (we currently only try twice).

Task failed (red): the task failed all of the attempts.

Task underperformed (orange): currently not used.

Task was skipped (transparent): the task is not scheduled for a build. This
usually happens when a task is removed from manifest.yaml file.

Task status unknown (purple): currently not used.

In addition to color-coding, a task may display a question mark. This means
that the task was marked as flaky manually. The status of such task is ignored
when considering whether the build is broken or not. For example, if a flaky
task fails, GitHub will not prevent PR submissions. However, if the latest
status of a non-flaky task is red, all pending PRs will contain a warning about
the broken build and recommend caution when submitting.

Legend:

[image: Task status legend]

The example below shows that commit e122d5d caused a wide-spread breakage,
which was fixed by bdc6f10. It also shows that Cirrus and Chrome
Infra (left-most tasks) decided to skip building these commits. Hovering over
a cell will pop up a tooltip containing the name of the broken task. Clicking
on the cell will open the log file in a new browser tab (only visible to core
contributors as of today).

[image: Broken Test]

Why is a task stuck on “new task” status?

The dashboard aggregates build results from multiple build environments,
including Cirrus, Chrome Infra, and devicelab. While devicelab
tests every commit that goes into the master branch, other environments
may skip some commits. For example, Cirrus will only test the
last commit of a PR that’s merged into the master branch. Chrome Infra may
skip commits when they come in too fast.

How the devicelab runs the tasks

The devicelab agents have a small script installed on them that continuously
asks the CI server for tasks to run. When the server finds a suitable task for
an agent it reserves that task for the agent. If the task succeeds, the agent
reports the success to the server and the dashboard shows that task in green.
If the task fails, the agent reports the failure to the server, the server
increments the counter counting the number of attempts it took to run the task
and puts the task back in the pool of available tasks. If a task does not
succeed after a certain number of attempts (as of this writing the limit is 2),
the task is marked as failed and is displayed using red color on the dashboard.

Running tests locally

Do make sure your tests pass locally before deploying to the CI environment.
Below is a handful of commands that run tests in a similar way to how the
CI environment runs them. These commands are also useful when you need to
reproduce a CI test failure locally.

Prerequisites

You must set the ANDROID_HOME environment variable to run tests on Android. If
you have a local build of the Flutter engine, then you have a copy of the
Android SDK at .../engine/src/third_party/android_tools/sdk.

You can find where your Android SDK is using flutter doctor.

Warnings

Running devicelab will do things to your environment.

Notably, it will start and stop gradle, for instance.

Running all tests

To run all tests defined in manifest.yaml, use option -a (--all):

dart bin/run.dart -a

Running specific tests

To run a test, use option -t (--task):

from the .../flutter/dev/devicelab directory
dart bin/run.dart -t {NAME_OR_PATH_OF_TEST}

Where NAME_OR_PATH_OF_TEST can be either of:

	the name of a task, which you can find in the manifest.yaml file in this
directory. Example: complex_layout__start_up.

	the path to a Dart file corresponding to a task, which resides in bin/tasks.
Tip: most shells support path auto-completion using the Tab key. Example:
bin/tasks/complex_layout__start_up.dart.

To run multiple tests, repeat option -t (--task) multiple times:

dart bin/run.dart -t test1 -t test2 -t test3

To run tests from a specific stage, use option -s (--stage).
Currently there are only three stages defined, devicelab,
devicelab_ios and devicelab_win.

dart bin/run.dart -s {NAME_OF_STAGE}

Reproducing broken builds locally

To reproduce the breakage locally git checkout the corresponding Flutter
revision. Note the name of the test that failed. In the example above the
failing test is flutter_gallery__transition_perf. This name can be passed to
the run.dart command. For example:

dart bin/run.dart -t flutter_gallery__transition_perf

Writing tests

A test is a simple Dart program that lives under bin/tests and uses
package:flutter_devicelab/framework/framework.dart to define and run a task.

Example:

import 'dart:async';

import 'package:flutter_devicelab/framework/framework.dart';

Future<void> main() async {
 await task(() async {
 ... do something interesting ...

 // Aggregate results into a JSONable Map structure.
 Map<String, dynamic> testResults = ...;

 // Report success.
 return new TaskResult.success(testResults);

 // Or you can also report a failure.
 return new TaskResult.failure('Something went wrong!');
 });
}

Only one task is permitted per program. However, that task can run any number
of tests internally. A task has a name. It succeeds and fails independently of
other tasks, and is reported to the dashboard independently of other tasks.

A task runs in its own standalone Dart VM and reports results via Dart VM
service protocol. This ensures that tasks do not interfere with each other and
lets the CI system time out and clean up tasks that get stuck.

Adding tests to the CI environment

The manifest.yaml file describes a subset of tests we run in the CI. To add
your test edit manifest.yaml and add the following in the “tasks” dictionary:

 {NAME_OF_TEST}:
 description: {DESCRIPTION}
 stage: {STAGE}
 required_agent_capabilities: {CAPABILITIES}

Where:

	{NAME_OF_TEST} is the name of your test that also matches the name of the
file in bin/tests without the .dart extension.

	{DESCRIPTION} is the plain English description of your test that helps
others understand what this test is testing.

	{STAGE} is devicelab if you want to run on Android, or devicelab_ios if
you want to run on iOS.

	{CAPABILITIES} is an array that lists the capabilities required of
the test agent (the computer that runs the test) to run your test. Available
capabilities are: has-android-device, has-ios-device.

 More Documentation

 Welcome to the Flutter API reference documentation.

Flutter is Google’s mobile UI framework for crafting high-quality native
interfaces on iOS and Android in record time. Flutter works with existing code,
is used by developers and organizations around the world, and is free and open
source.

The API reference herein covers all libraries that are exported by the Flutter
SDK.

More Documentation

This site hosts Flutter’s API documentation. Other documentation can be found at
the following locations:

	flutter.io [https://flutter.io/] (main site)

	Installation [https://flutter.io/docs/get-started/install]

	Codelabs [https://flutter.io/docs/codelabs]

	Contributing to Flutter [https://github.com/flutter/flutter/blob/master/CONTRIBUTING.md]

Importing a Library

Framework Libraries

Libraries in the “Libraries” section below (or in the left navigation) are part
of the core Flutter framework and are imported using
'package:flutter/<library>.dart', like so:

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';

Dart Libraries

Libraries in the “Dart” section exist in the 'dart:' namespace and are imported
using 'dart:<library>', like so:

import 'dart:async';
import 'dart:ui';

Except for 'dart:core', you must import a Dart library before you can use it.

Other Libraries

Libraries in other sections are supporting libraries that ship with Flutter.
They are organized by package and are imported using
'package:<package>/<library>.dart', like so:

import 'package:flutter_test/flutter_test.dart';
import 'package:file/local.dart';

Finding Other Libraries

Flutter has a rich community of packages that have been contributed by the
open-source community. You can browse those packages at
pub.dartlang.org [http://pub.dartlang.org/flutter]

 <no title>

 Automated Flutter integration test suites. Each suite consists of either a
complete Flutter app and a flutter_driver specification that drives tests
from the UI, or a native app that is meant to integrate with Flutter for
testing.

Intended for use with devicelab tests.

 Android host app

Android host app

Android host app for a Flutter module created using

$ flutter create -t module hello

and placed in a sibling folder to (a clone of) the host app.
Used by the module_test.dart device lab test.

 Integration test for touch events on embedded Android views

Integration test for touch events on embedded Android views

This test verifies that the synthesized motion events that get to embedded
Android view are equal to the motion events that originally hit the FlutterView.

The test app’s Android code listens to MotionEvents that get to FlutterView and
to an embedded Android view and sends them over a platform channel to the Dart
code where the events are matched.

This is what the app looks like:

[image: android_views test app]

The blue part is the embedded Android view, because it is positioned at the top
left corner, the coordinate systems for FlutterView and for the embedded view’s
virtual display has the same origin (this makes the MotionEvent comparison
easier as we don’t need to translate the coordinates).

The app includes the following control buttons:

	RECORD - Start listening for MotionEvents for 3 seconds, matched/unmatched events are
displayed in the listview as they arrive.

	CLEAR - Clears the events that were recorded so far.

	SAVE - Saves the events that hit FlutterView to a file.

	PLAY FILE - Send a list of events from a bundled asset file to FlutterView.

A recorded touch events sequence is bundled as an asset in the
assets_for_android_view package which lives in the goldens repository.

When running this test with flutter drive the record touch sequences is
replayed and the test asserts that the events that got to FlutterView are
equivalent to the ones that got to the embedded view.

 channels

channels

Integration test of platform channels.

 external_ui

external_ui

A Flutter project for testing external texture rendering.

 flavors

flavors

Integration test of build flavors (Android product flavors, Xcode schemes).

 Launch Screen Assets

Launch Screen Assets

You can customize the launch screen with your own desired assets by replacing the image files in this directory.

You can also do it by opening your Flutter project’s Xcode project with open ios/Runner.xcworkspace, selecting Runner/Assets.xcassets in the Project Navigator and dropping in the desired images.

 iOS host app

iOS host app

iOS host app for a Flutter module created using

$ flutter create -t module hello

and placed in a sibling folder to (a clone of) the host app.
Used by the module_test_ios.dart device lab test.

 <no title>

 Integration app for testing multiple named isolates.

 platform_interaction

platform_interaction

Integration test of platform interaction.

 Flutter UI integration tests

Flutter UI integration tests

This project contains a collection of non-plugin-dependent UI
integration tests. The device code is in the lib/ directory, the
driver code is in the test_driver/ directory. They work together.
Normally they are run via the devicelab.

keyboard_resize

Verifies that showing and hiding the keyboard resizes the content.

routing

Verifies that flutter drive --route works correctly.

 Snippet Tool

Snippet Tool

This is a dartdoc extension tool that takes code snippets and expands how they
are presented so that Flutter can have more interactive and useful code
snippets.

This takes code in dartdocs, like this:

/// The following is a skeleton of a stateless widget subclass called `GreenFrog`:
/// {@tool snippet --template="stateless_widget"}
/// class GreenFrog extends StatelessWidget {
/// const GreenFrog({ Key key }) : super(key: key);
///
/// @override
/// Widget build(BuildContext context) {
/// return Container(color: const Color(0xFF2DBD3A));
/// }
/// }
/// {@end-tool}

And converts it into something which has a nice visual presentation, and
a button to automatically copy the sample to the clipboard.

It does this by processing the source input and emitting HTML for output,
which dartdoc places back into the documentation. Any options given to the
{@tool ...} directive are passed on verbatim to the tool.

To render the above, the snippets tool needs to render the code in a combination
of markdown and HTML, using the {@inject-html} dartdoc directive.

Templates

In order to support showing an entire app when you click on the right tab of
the code snippet UI, we have to be able to insert the snippet into the template
and instantiate the right parts.

To do this, there is a config/templates directory that
contains a list of templates. These templates represent an entire app that the
snippet can be placed into, basically a replacement for lib/main.dart in a
flutter app package.

Skeletons

A skeleton (in relation to this tool, in the config/skeletons
directory) is an HTML template into which the snippet Dart code and description
are interpolated, in order to display it nicely.

There is currently one skeleton for
application snippets and one for
sample
snippets, but there could be more. It uses moustache notation (e.g. {{code}})
to mark where the components to be interpolated into the template should go.

(It doesn’t actually use the moustache package, since the only things that need
substituting are simple strings, but it uses the same syntax).

 Creating Code Snippets

Creating Code Snippets

In general, creating application snippets can be accomplished with the following
syntax inside of the dartdoc comment for a Flutter class/variable/enum/etc.:

/// {@tool snippet --template=stateful_widget}
/// Any text outside of the code blocks will be accumulated and placed at the
/// top of the snippet box as a description. Don't try and say "see the code
/// above" or "see the code below", since the location of the description may
/// change in the future. You can use dartdoc [Linking] in the description, and
/// __Markdown__ too.
/// ```dart preamble
/// class Foo extends StatelessWidget {
/// const Foo({this.value = ''});
///
/// String value;
///
/// @override
/// Widget build(BuildContext context) {
/// return Text(value);
/// }
/// }
/// ```
/// This will get tacked on to the end of the description above, and shown above
/// the snippet. These two code blocks will be separated by `///...` in the
/// short version of the snippet code sample.
/// ```dart
/// String myValue = 'Foo';
///
/// @override
/// Widget build(BuildContext) {
/// return const Foo(myValue);
/// }
/// ```
/// {@end-tool}

This will result in the template having the section that’s inside “```dart”
interpolated into the template’s stateful widget’s state object body.

All code within a code block in a snippet needs to be able to be run through
dartfmt without errors, so it needs to be valid code (This shouldn’t be an
additional burden, since all code will also be compiled to be sure it compiles).

Available Templates

The templates available for using as an argument to the snippets tool are as
follows:

	stateful_widget : Takes a preamble in addition to the default code
block, which will be placed at the top level of the Dart file, so bare
function calls are not allowed in the preamble. The default code block is
placed as the body of a stateful widget, so you will need to implement the
build() function, and any state variables.

 vitool

vitool

This tool generates Dart files from frames described in SVG files that follow
the small subset of SVG described below.
This tool was crafted specifically to handle the assets for certain Material
design animations as created by the Google Material Design team, and is not
intended to be a general-purpose tool.

Supported SVG features

	groups

	group transforms

	group opacities

	paths (strokes are not supported, only fills, eliptical arc curve commands are not supported)

 Flutter Examples

Flutter Examples

This directory contains several examples of using Flutter. To run an example,
use flutter run inside that example’s directory. See the getting started
guide [https://flutter.io/getting-started/] to install the flutter tool.

For additional samples, see the
flutter/samples [https://github.com/flutter/samples] repo.

Available examples include:

	Hello, world The hello world app is a minimal Flutter app
that shows the text “hello, world.”

	Flutter gallery The flutter gallery app showcases
Flutter’s widgets, including its implementation of material
design [https://material.google.com/].

	Layers The layers vignettes show how to use the various layers
in the Flutter framework. For details, see the layers
README.

	Platform Channel The platform channel app demonstrates
how to connect a Flutter app to platform-specific APIs. For documentation, see
https://flutter.io/platform-channels/.

	Platform Channel Swift The platform channel swift
app is the same as platform
channel but the iOS version is in Swift and there is no
Android version.

Notes

Note on Gradle wrapper files in .gitignore:

Gradle wrapper files should normally be checked into source control. The example
projects don’t do that to avoid having several copies of the wrapper binary in
the Flutter repo. Instead, the Gradle wrapper is injected by Flutter tooling,
and the wrapper files are .gitignore’d to avoid making the Flutter repository
dirty as a side effect of running the examples.

 Samples Catalog

Samples Catalog

A collection of sample apps that demonstrate how Flutter can be used.

Each sample app is contained in a single .dart file located in the lib
directory. To run each sample app, specify the corresponding file on the
flutter run command line, for example:

flutter run lib/animated_list.dart
flutter run lib/app_bar_bottom.dart
flutter run lib/basic_app_bar.dart
...

The apps are intended to be short and easily understood. Classes that represent
the sample’s focus are at the top of the file; data and support classes follow.

Each sample app contains a comment (usually at the end) which provides some
standard documentation that also appears in the web view of the catalog.
See the “Generating…” section below.

Generating the web view of the catalog

Markdown and a screenshot of each app are produced by bin/sample_page.dart
and saved in the .generated directory. The markdown file contains
the text taken from the Sample Catalog comment found in the app’s source
file, followed by the source code itself.

This sample_page.dart command line app must be run from the examples/catalog
directory. It relies on templates also found in the bin directory, and it
generates and executes test_driver apps to collect the screenshots:

cd examples/catalog
dart bin/sample_page.dart

 <no title>

 The screenshot_test.dart and screenshot_test.dart files were generated by ../bin/sample_page.dart. They should not be checked in.

 Flutter gallery

Flutter gallery

A demo app for Flutter’s material design and cupertino widgets, as
well as many other features of the Flutter SDK.

Building

You can follow these instructions to build the gallery app
and install it onto your device.

Prerequisites

If you are new to Flutter, please first follow
the Flutter Setup [https://flutter.io/setup/] guide.

Building and installing the Flutter app

	cd $FLUTTER_ROOT/examples/flutter_gallery

	flutter upgrade

	flutter run --release

The flutter run --release command both builds and installs the Flutter app.

Prerelease checklist

	Verify that the About box’s license page scrolls and reveals its long
long stream of license texts.

Icon

Android launcher icons were generated using Android Asset Studio:
https://romannurik.github.io/AndroidAssetStudio/icons-launcher.html#foreground.type=image&foreground.space.trim=1&foreground.space.pad=0.1&foreColor=607d8b%2C0&crop=0&backgroundShape=square&backColor=fafafa%2C100&effects=none

 FastLane documentation

FastLane documentation

This folder contains hermetic scripts to deploy a built APK to the play store.

This is done using the FastLane [https://fastlane.tools] tool suite.

Deployment can be done manually by Googlers by following
go/flutter-gallery-publish (internal doc).

Deployment is automatically done by Cirrus on tagged branch commits.

 FastLane documentation

FastLane documentation

This folder contains hermetic scripts to re-build the app using a distribution
profile and then deploy to TestFlight.

This is done using the FastLane [https://fastlane.tools] tool suite.

Deployment can be done manually by Googlers by following
go/flutter-gallery-publish (internal doc).

Deployment is automatically done by Cirrus on tagged branch commits.

 Example of embedding Flutter using FlutterView

Example of embedding Flutter using FlutterView

This project demonstrates how to embed Flutter within an iOS or Android
application. On iOS, the iOS and Flutter components are built with Xcode. On
Android, the Android and Flutter components are built with Android Studio or
gradle.

You can read more about
accessing platform and third-party services in Flutter [https://flutter.io/platform-services/].

iOS

You can open ios/Runner.xcworkspace in Xcode and build the project as
usual. For this sample you need to run pod install from the ios folder
before building the first time.

Android

You can open android/ in Android Studio and build the project as usual.

 <no title>

 # To run the Hello World demo:
flutter run

To run the Hello World demo showing Arabic:
flutter run lib/arabic.dart

 Examples of Flutter’s layered architecture

Examples of Flutter’s layered architecture

This directory contains a number of self-contained examples that illustrate
Flutter’s layered architecture.

	raw/ These examples show how to program against the lowest layer of
the system. They manually receive input packets and construct composited
scenes.

	rendering/ These examples use Flutter’s render tree to
structure your app using a retained tree of visual objects. These objects
coordinate to determine their size and position on screen and to handle
events.

	widgets/ These examples use Flutter’s widgets to build more
elaborate apps using a reactive framework.

	services/ These examples use services available in Flutter to
interact with the host platform.

To run each example, specify the demo file on the flutter run
command line, for example:

flutter run raw/spinning_square.dart
flutter run rendering/spinning_square.dart
flutter run widgets/spinning_square.dart

 Example of calling platform services from Flutter

Example of calling platform services from Flutter

This project demonstrates how to connect a Flutter app to platform specific services.

You can read more about
accessing platform and third-party services in Flutter [https://flutter.io/platform-channels/].

iOS

You can use the commands flutter build and flutter run from the app’s root
directory to build/run the app or you can open ios/Runner.xcworkspace in Xcode
and build/run the project as usual.

Android

You can use the commands flutter build and flutter run from the app’s root
directory to build/run the app or to build with Android Studio, open the
android folder in Android Studio and build the project as usual.

 Example of calling platform services from Flutter

Example of calling platform services from Flutter

This project demonstrates how to connect a Flutter app to platform
specific services on iOS using Swift. The equivalent version of this
project in Objective C is found in examples/platform_channel.

You can read more about
accessing platform and third-party services in Flutter [https://flutter.io/platform-channels/].

iOS

You can use the commands flutter build and flutter run from the app’s root
directory to build/run the app or you can open ios/Runner.xcworkspace in Xcode
and build/run the project as usual.

Android

We refer to the platform_channel project.

 Example of switching between full-screen Flutter and Platform View

Example of switching between full-screen Flutter and Platform View

This project demonstrates how to bring up a full-screen iOS/Android view from a
full-screen Flutter view along with passing data back and forth between the two.

On iOS we use a CocoaPods dependency to add a Material Design button, and so
pod install needs to be invoked in the ios/ folder before flutter run:

pushd ios/ ; pod install ; popd
flutter run

 Stocks

Stocks

Demo app for the material design widgets and other features provided by Flutter.

Building

You can follow these instructions to build the stocks app
and install it onto your device.

Prerequisites

If you are new to Flutter, please first follow
the Flutter Setup [https://flutter.io/setup/] guide.

Building and installing the stocks demo app

	cd $FLUTTER_ROOT/examples/stocks

	flutter upgrade

	flutter run --release

The flutter run --release command both builds and installs the Flutter app.

Internationalization

This app has been internationalized (just enough to show how it’s
done). It’s an example of how one can do so with the
Dart intl package [https://pub.dartlang.org/packages/intl].

The Flutter Internationalization Tutorial [https://flutter.io/tutorials/internationalization/]
covers Flutter app internationalization in general.

See regenerate.md for an explanation
of how the Dart internationalization tools, like
intl_translation:generate_from_arb, were used to generate
localizations for this app.

Icon

Icon was created using Android Asset Studio:
https://romannurik.github.io/AndroidAssetStudio/icons-launcher.html#foreground.type=image&foreground.space.trim=0&foreground.space.pad=0&foreColor=607d8b%2C0&crop=0&backgroundShape=square&backColor=fff%2C100&effects=none

From this clipart:
https://openclipart.org/detail/30403/tango-go-up
Which is public domain.

 Regenerating the i18n files

Regenerating the i18n files

The files in this directory are based on ../lib/stock_strings.dart
which defines all of the localizable strings used by the stocks
app. The stocks app uses
the Dart intl package [https://github.com/dart-lang/intl].

Rebuilding everything requires two steps.

With the examples/stocks as the current directory, generate
intl_messages.arb from lib/stock_strings.dart:

flutter pub pub run intl_translation:extract_to_arb --output-dir=lib/i18n lib/stock_strings.dart

The intl_messages.arb file is a JSON format map with one entry for
each Intl.message() function defined in stock_strings.dart. This
file was used to create the English and Spanish localizations,
stocks_en.arb and stocks_es.arb. The intl_messages.arb wasn’t
checked into the repository, since it only serves as a template for
the other .arb files.

With the examples/stocks as the current directory, generate a
stock_messages_<locale>.dart for each stocks_<locale>.arb file and
stock_messages_all.dart, which imports all of the messages files:

flutter pub pub run intl_translation:generate_from_arb --output-dir=lib/i18n \
 --generated-file-prefix=stock_ --no-use-deferred-loading lib/*.dart lib/i18n/stocks_*.arb

The StockStrings class uses the generated initializeMessages()
function (stock_messages_all.dart) to load the localized messages
and Intl.message() to look them up.

 Flutter

Flutter

Flutter is a new way to build high-performance, cross-platform mobile apps.
Flutter is optimized for today’s — and tomorrow’s — mobile devices. We are
focused on low-latency input and high frame rates on Android and iOS.

See the getting started guide [https://flutter.io/getting-started/] for
information about using Flutter.

 <no title>

 The rule for packages in this directory is that they can depend on
nothing but core Dart packages. They can’t depend on dart:ui, they
can’t depend on any package:, and they can’t depend on anything
outside this directory.

 Material Library Localizations

Material Library Localizations

The .arb files in this directory contain localized values (primarily
strings) used by the material library. The localizations.dart file
combines all of the localizations into a single Map that is
linked with the rest of flutter_localizations package.

If you’re looking for information about internationalizing Flutter
apps in general, see the
Internationalizing Flutter Apps [https://flutter.io/tutorials/internationalization/] tutorial.

Translations for one locale: .arb files

The Material library uses
Application Resource Bundle [https://code.google.com/p/arb/wiki/ApplicationResourceBundleSpecification]
files, which have a .arb extension, to store localized translations
of messages, format strings, and other values. This format is also
used by the Dart intl [https://pub.dartlang.org/packages/intl]
package and it is supported by the
Google Translators Toolkit [https://translate.google.com/toolkit].

The material library only depends on a small subset of the ARB format.
Each .arb file contains a single JSON table that maps from resource
IDs to localized values.

Filenames contain the locale that the values have been translated
for. For example material_de.arb contains German translations, and
material_ar.arb contains Arabic translations. Files that contain
regional translations have names that include the locale’s regional
suffix. For example material_en_GB.arb contains additional English
translations that are specific to Great Britain.

There is one language-specific .arb file for each supported locale. If
an additional file with a regional suffix is present, the regional
localizations are automatically merged with the language-specific ones.

The JSON table’s keys, called resource IDs, are valid Dart variable
names. They correspond to methods from the MaterialLocalizations
class. For example:

Widget build(BuildContext context) {
 return new FlatButton(
 child: new Text(
 MaterialLocalizations.of(context).cancelButtonLabel,
),
);
}

This widget build method creates a button whose label is the local
translation of “CANCEL” which is defined for the cancelButtonLabel
resource ID.

Each of the language-specific .arb files contains an entry for
cancelButtonLabel. They’re all represented by the Map in the
generated localizations.dart file. The Map is used by the
MaterialLocalizations class.

material_en.arb Defines all of the resource IDs

All of the .arb files whose names do not include a regional suffix
contain translations for the same set of resource IDs as
material_en.arb.

For each resource ID defined for English in material_en.arb, there is
an additional resource with an ‘@’ prefix. These ‘@’ resources are not
used by the material library at run time, they just exist to inform
translators about how the value will be used, and to inform the code
generator about what code to write.

"cancelButtonLabel": "CANCEL",
"@cancelButtonLabel": {
 "description": "The label for cancel buttons and menu items.",
 "type": "text"
},

Values with Parameters, Plurals

A few of material translations contain $variable tokens. The
material library replaces these tokens with values at run-time. For
example:

"aboutListTileTitle": "About $applicationName",

The value for this resource ID is retrieved with a parameterized
method instead of a simple getter:

MaterialLocalizations.of(context).aboutListTileTitle(yourAppTitle)

The names of the $variable tokens match the names of the
MaterialLocalizations method parameters.

Plurals are handled similarly, with a lookup method that includes a
quantity parameter. For example selectedRowCountTitle returns a
string like “1 item selected” or “no items selected”.

MaterialLocalizations.of(context).selectedRowCountTitle(yourRowCount)

Plural translations can be provided for several quantities: 0, 1, 2,
“few”, “many”, “other”. The variations are identified by a resource ID
suffix which must be one of “Zero”, “One”, “Two”, “Few”, “Many”,
“Other”. The “Other” variation is used when none of the other
quantities apply. All plural resources must include a resource with
the “Other” suffix. For example the English translations
(‘material_en.arb’) for selectedRowCountTitle are:

"selectedRowCountTitleZero": "No items selected",
"selectedRowCountTitleOne": "1 item selected",
"selectedRowCountTitleOther": "$selectedRowCount items selected",

scriptCategory and timeOfDayFormat

The values of these resource IDs are not translations, they’re keywords that
help define an app’s text theme and time picker layout respectively.

The value of timeOfDayFormat defines how a time picker displayed by
showTimePicker() [https://docs.flutter.io/flutter/material/showTimePicker.html]
formats and lays out its time controls. The value of timeOfDayFormat
must be a string that matches one of the formats defined by
https://docs.flutter.io/flutter/material/TimeOfDayFormat-class.html.
It is converted to an enum value because the material_en.arb file
has this value labeled as "x-flutter-type": "icuShortTimePattern".

The value of scriptCategory is based on the
Language categories reference [https://material.io/design/typography/language-support.html#language-categories-reference]
section in the Material spec. The Material theme uses the
scriptCategory value to lookup a localized version of the default
TextTheme, see
Typography.geometryThemeFor [https://docs.flutter.io/flutter/material/Typography/geometryThemeFor.html].

Generated file localizations.dart: all of the localizations as a Map

If you look at the comment at the top of localizations.dart you’ll
see that it was manually generated using a dev/tools app called
gen_localizations.

You can see what that script would generate by running this command:

dart dev/tools/gen_localizations.dart packages/flutter_localizations/lib/src/l10n material

The gen_localizations app just combines the contents of all of the
.arb files into a single Map that has entries for each .arb
file’s locale. The MaterialLocalizations class implementation uses
this Map to implement the methods that lookup localized resource
values.

The gen_localizations app must be run by hand after .arb files have
been updated. The app’s first parameter is the path to this directory,
the second is the file name prefix (the file name less the locale
suffix) for the .arb files in this directory.

To in-place update the localizations.dart file using the default
values, you can just run:

dart dev/tools/gen_localizations.dart --overwrite

Translations Status, Reporting Errors

The translations (the .arb files) in this directory are based on the
English translations in material_en.arb. Google contributes
translations for all the languages supported by this package.
(Googlers, for more details see <go/flutter-l10n>.)

If you have feedback about the translations please
file an issue on the Flutter github repo [https://github.com/flutter/flutter/issues/new?template=BUG.md].

See Also

The Internationalizing Flutter Apps [https://flutter.io/tutorials/internationalization/]
tutorial describes how to use the internationalization APIs in an
ordinary Flutter app.

Application Resource Bundle [https://code.google.com/p/arb/wiki/ApplicationResourceBundleSpecification]
covers the .arb file format used to store localized translations
of messages, format strings, and other values.

The Dart intl [https://pub.dartlang.org/packages/intl]
package supports internationalization.

 Flutter Tools

Flutter Tools

Developer tools for building Flutter applications.

Be sure to follow the instructions on
CONTRIBUTING.md to setup.

To run the tests, ensure that no devices are connected,
then navigate to flutter_tools and execute:

../../bin/cache/dart-sdk/bin/pub run test

 Flutter Daemon

Flutter Daemon

Overview

The flutter command-line tool supports a daemon server mode for use by IDEs and other tools.

flutter daemon

It runs a persistent, JSON-RPC based server to communicate with devices. IDEs and other tools can start the flutter tool in this mode and get device addition and removal notifications, as well as being able to programmatically start and stop apps on those devices.

A set of flutter daemon commands/events are also exposed via flutter run --machine and flutter attach --machine which allow IDEs and tools to launch and attach to flutter applications and interact to send commands like Hot Reload. The command and events that are available in these modes are documented at the bottom of this document.

Protocol

The daemon speaks JSON-RPC [http://json-rpc.org/] to clients. It uses stdin and stdout as the protocol transport. To send a command to the server, create your command as a JSON-RPC message, encode it to json, surround the encoded text with square brackets, and write it as one line of text to the stdin of the process:

[{"method":"daemon.version","id":0}]

The response will come back as a single line from stdout:

[{"id":0,"result":"0.1.0"}]

All requests and responses should be wrapped in square brackets. This ensures that the communications are resilient to stray output in the stdout/stdin stream.

id is an opaque type to the server, but ids should be unique for the life of the server. A response to a particular command will contain the id that was passed in for that command.

Each command should have a method field. This is in the form ‘domain.command’.

Any params for that command should be passed in through a params field. Here’s a example request/response for the device.getDevices method:

[{"method":"device.getDevices","id":2}]

[{"id":2,"result":[{"id":"702ABC1F-5EA5-4F83-84AB-6380CA91D39A","name":"iPhone 6","platform":"ios_x64","available":true}]}]

Domains and Commands

daemon domain

daemon.version

The version() command responds with a String with the protocol version.

daemon.shutdown

The shutdown() command will terminate the flutter daemon. It is not necessary to call this before shutting down the daemon; it is perfectly acceptable to just kill the daemon process.

Events

daemon.connected

The daemon.connected event is sent when the daemon starts. The params field will be a map with the following fields:

	version: The protocol version. This is the same version returned by the version() command.

	pid: The pid of the daemon process.

daemon.logMessage

The daemon.logMessage event is sent whenever a log message is created - either a status level message or an error. The JSON message will contain an event field with the value daemon.logMessage, and an params field containing a map with level, message, and (optionally) stackTrace fields.

daemon.showMessage

The daemon.showMessage event is sent by the daemon when some if would be useful to show a message to the user. This could be an error notification or a notification that some development tools are not configured or not installed. The JSON message will contain an event field with the value daemon.showMessage, and an params field containing a map with level, title, and message fields. The valid options for level are info, warning, and error.

It is up to the client to decide how best to display the message; for some clients, it may map well to a toast style notification. There is an implicit contract that the daemon will not send too many messages over some reasonable period of time.

app domain

app.restart

The restart() restarts the given application. It returns a Map of { int code, String message, String hintMessage, String hintId } to indicate success or failure in restarting the app. A code of 0 indicates success, and non-zero indicates a failure. If hintId is non-null and equal to restartRecommended, that indicates that the reload was successful, but not all reloaded elements were executed during view reassembly (i.e., the user might not see all the changes in the current UI, and a restart could be necessary).

	appId: the id of a previously started app; this is required.

	fullRestart: optional; whether to do a full (rather than an incremental) restart of the application

	reason: optional; the reason for the full restart (eg. save, manual) for reporting purposes

	pause: optional; when doing a hot restart the isolate should enter a paused mode

app.callServiceExtension

The callServiceExtension() allows clients to make arbitrary calls to service protocol extensions. It returns a Map - the result returned by the service protocol method.

	appId: the id of a previously started app; this is required.

	methodName: the name of the service protocol extension to invoke; this is required.

	params: an optional Map of parameters to pass to the service protocol extension.

app.detach

The detach() command takes one parameter, appId. It returns a bool to indicate success or failure in detaching from an app without stopping it.

	appId: the id of a previously started app; this is required.

app.stop

The stop() command takes one parameter, appId. It returns a bool to indicate success or failure in stopping an app.

	appId: the id of a previously started app; this is required.

Events

app.start

This is sent when an app is starting. The params field will be a map with the fields appId, directory, and deviceId.

app.debugPort

This is sent when an observatory port is available for a started app. The params field will be a map with the fields appId, port, and wsUri. Clients should prefer using the wsUri field in preference to synthesizing a uri using the port field. An optional field, baseUri, is populated if a path prefix is required for setting breakpoints on the target device.

app.started

This is sent once the application launch process is complete and the app is either paused before main() (if startPaused is true) or main() has begun running. When attaching, this even will be fired once attached. The params field will be a map containing the field appId.

app.log

This is sent when output is logged for a running application. The params field will be a map with the fields appId and log. The log field is a string with the output text. If the output indicates an error, an error boolean field will be present, and set to true.

app.progress

This is sent when an operation starts and again when it stops. When an operation starts, the event contains the fields id, an opaque identifier, and message containing text describing the operation. When that same operation ends, the event contains the same id field value as when the operation started, along with a finished bool field with the value true, but no message field.

app.stop

This is sent when an app is stopped or detached from. The params field will be a map with the field appId.

device domain

device.getDevices

Return a list of all connected devices. The params field will be a List; each item is a map with the fields id, name, platform, and emulator (a boolean).

device.enable

Turn on device polling. This will poll for newly connected devices, and fire device.added and device.removed events.

device.disable

Turn off device polling.

device.forward

Forward a host port to a device port. This call takes two required arguments, deviceId and devicePort, and one optional argument, hostPort. If hostPort is not specified, the host port will be any available port.

This method returns a map with a hostPort field set.

device.unforward

Removed a forwarded port. It takes deviceId, devicePort, and hostPort as required arguments.

Events

device.added

This is sent when a device is connected (and polling has been enabled via enable()). The params field will be a map with the fields id, name, platform, and emulator.

device.removed

This is sent when a device is disconnected (and polling has been enabled via enable()). The params field will be a map with the fields id, name, platform, and emulator.

emulator domain

emulator.getEmulators

Return a list of all available emulators. The params field will be a List; each item is a map with the fields id and name.

emulator.launch

The launch() command allows launching an emulator/simulator by its id.

	emulatorId: the id of an emulator as returned by getEmulators.

emulator.create

The create() command creates a new Android emulator with an optional name.

	name: an optional name for this emulator

The returned params will contain:

	success - whether the emulator was successfully created

	emulatorName - the name of the emulator created; this will have been auto-generated if you did not supply one

	error - when success=false, a message explaining why the creation of the emulator failed

‘flutter run –machine’ and ‘flutter attach –machine’

When running flutter run --machine or flutter attach --machine the following subset of the daemon is available:

daemon domain

The following subset of the daemon domain is available in flutter run --machine. Refer to the documentation above for details.

	Commands

	version

	shutdown

	Events

	connected

	logMessage

app domain

The following subset of the app domain is available in flutter run --machine. Refer to the documentation above for details.

	Commands

	restart

	callServiceExtension

	detach

	stop

	Events

	start

	debugPort

	started

	log

	progress

	stop

Source

See the source [https://github.com/flutter/flutter/blob/master/packages/flutter_tools/lib/src/commands/daemon.dart] for the daemon protocol and implementation.

Changelog

	0.4.2: Added app.detach command

	0.4.1: Added flutter attach --machine

	0.4.0: Added emulator.create command

	0.3.0: Added daemon.connected event at startup

 Launch Screen Assets

Launch Screen Assets

You can customize the launch screen with your own desired assets by replacing the image files in this directory.

You can also do it by opening your Flutter project’s Xcode project with open ios/Runner.xcworkspace, selecting Runner/Assets.xcassets in the Project Navigator and dropping in the desired images.

 Templates for Flutter Module

Templates for Flutter Module

common

Written to root of Flutter application.

Adds Dart project files including pubspec.yaml.

android

library

Written to the .android/ hidden folder.

Contents wraps Flutter/Dart code as a Gradle project that defines an
Android library.

Executing ./gradlew flutter:assembleDebug in that folder produces
a .aar archive.

Android host apps can set up a dependency to this project to consume
Flutter views.

gradle

Written to .android/ or android/.

Mixin for adding Gradle boilerplate to Android projects.

host_app_common

Written to either .android/ or android/.

Contents define a single-Activity, single-View Android host app
with a dependency on the .android/Flutter library.

Executing ./gradlew app:assembleDebug in the target folder produces
an .apk archive.

Used with either android_host_ephemeral or android_host_editable.

host_app_ephemeral

Written to .android/ on top of android_host_common.

Combined contents define an ephemeral (hidden, auto-generated,
under Flutter tooling control) Android host app with a dependency on the
.android/Flutter library.

host_app_editable

Written to android/ on top of android_host_common.

Combined contents define an editable (visible, one-time generated,
under app author control) Android host app with a dependency on the
.android/Flutter library.

ios

library

Written to the .ios/Flutter hidden folder.

Contents wraps Flutter/Dart code for consumption by an Xcode project.

iOS host apps can set up a dependency to this contents to consume
Flutter views.

host_app_ephemeral

Written to .ios/ outside the Flutter/ sub-folder.

Combined contents define an ephemeral (hidden, auto-generated,
under Flutter tooling control) iOS host app with a dependency on the
.ios/Flutter folder contents.

The host app does not make use of CocoaPods, and is therefore
suitable only when the Flutter part declares no plugin dependencies.

host_app_ephemeral_cocoapods

Written to .ios/ on top of host_app_ephemeral.

Adds CocoaPods support.

Combined contents define an ephemeral host app suitable for when the
Flutter part declares plugin dependencies.

 Launch Screen Assets

Launch Screen Assets

You can customize the launch screen with your own desired assets by replacing the image files in this directory.

You can also do it by opening your Flutter project’s Xcode project with open ios/Runner.xcworkspace, selecting Runner/Assets.xcassets in the Project Navigator and dropping in the desired images.

 <no title>

 This directory contains support code for embedding the Flutter project in an iOS app.
It should not be edited or checked in.

 Integration tests

Integration tests

These tests are not hermetic, and use actual Flutter SDK.
While they don’t require actual devices, they run flutter_tester to test
Dart VM and Flutter integration.

Use this command to run:

../../bin/cache/dart-sdk/bin/pub run test

_images/broken-test.png
u—.oocuuu L=mSlAL e ———

mmwmmmDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDE
? p556e14 (mraleph) EEEEEEECECCEECCOECO0E0 CoOoOOECOOEEE
E%wmmm@) 0 G 6 O [O
Biicsinesia) DOO0DDCC0000CCC0C0BEMBN, T mehe concarent hot reioad 1D E
Bansiesve) COODCCO00000000000088 ae
M wora3dasiva) ODOOOOOOOOO0O0ODOOOOOOEE DO DE

_static/ajax-loader.gif

_images/legend.png
- new task
‘ -task is running
([- task succeeded
[] -taskis flaky
[- task failed
[- task underperformed
- task was skipped
B - task status unknown
[77) - task marked flaky

_images/ten_thousand.png
